Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
One Health Bulletin ; 2(16), 2022.
Article in English | CAB Abstracts | ID: covidwho-2288530

ABSTRACT

Vaccination is effective in preventing the increase of disease, especially emerging infectious diseases (EIDs), and it is particularly important for people in close contact with infected sources and susceptible populations who are at increased risk of getting infectious diseases due to behavior, occupation or health. Despite targeted vaccination guidelines, inadequate vaccination of the key populations fails to receive widespread attention, resulting in a high-risk transition of disease from key populations to general populations. Strengthening the vaccination of the susceptible groups can effectively block the spread of pathogens to general populations, and reduce the consumption of medical resources in universal vaccination, which has significant economic value. In this review, we describe the prevalence of EIDs, analyze the experience and lessons of infectious disease vaccination in key populations through several cases, and further explore the causes for the decline in vaccination rates of key populations. According to the trends of EIDs, a plan to strengthen the vaccination of key populations is proposed to effectively prevent the transition of EIDs from key populations to general populations.

2.
Int J Nanomedicine ; 18: 353-367, 2023.
Article in English | MEDLINE | ID: covidwho-2232746

ABSTRACT

Background: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variants have risen to dominance, which contains far more mutations in the spike protein in comparison to previously reported variants, compromising the efficacy of most existing vaccines or therapeutic monoclonal antibodies. Nanobody screened from high-throughput naïve libraries is a potential candidate for developing preventive and therapeutic antibodies. Methods: Four nanobodies specific to the SARS-CoV-2 wild-type receptor-binding domain (RBD) were screened from a naïve phage display library. Their affinity and neutralizing activity were evaluated by surface plasmon resonance assays, surrogate virus neutralization tests, and pseudovirus neutralization assays. Preliminary identification of the binding epitopes of nanobodies by peptide-based ELISA and competition assay. Then four multivalent nanobodies were engineered by attaching the monovalent nanobodies to an antibody-binding nanoplatform constructed based on the lumazine synthase protein cage nanoparticles isolated from the Aquifex aeolicus (AaLS). Finally, the differences in potency between the monovalent and multivalent nanobodies were compared using the same methods. Results: Three of the four specific nanobodies could maintain substantial inhibitory activity against the Omicron (B.1.1.529), of them, B-B2 had the best neutralizing activity against the Omicron (B.1.1.529) pseudovirus (IC50 = 1.658 µg/mL). The antiviral ability of multivalent nanobody LS-B-B2 was improved in the Omicron (B.1.1.529) pseudovirus assays (IC50 = 0.653 µg/mL). The results of peptide-based ELISA indicated that LS-B-B2 might react with the linear epitopes in the SARS-CoV-2 RBD conserved regions, which would clarify the mechanisms for the maintenance of potent neutralization of Omicron (B.1.1.529) preliminary. Conclusion: Our study indicated that the AaLS could be used as an antibody-binding nanoplatform to present nanobodies on its surface and improve the potency of nanobodies. The multivalent nanobody LS-B-B2 may serve as a potential agent for the neutralization of SARS-CoV-2 variants.


Subject(s)
COVID-19 , Single-Domain Antibodies , Humans , SARS-CoV-2 , Epitopes , Antibodies, Neutralizing , Antibodies, Viral
3.
International journal of nanomedicine ; 18:353-367, 2023.
Article in English | EuropePMC | ID: covidwho-2207788

ABSTRACT

Background The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variants have risen to dominance, which contains far more mutations in the spike protein in comparison to previously reported variants, compromising the efficacy of most existing vaccines or therapeutic monoclonal antibodies. Nanobody screened from high-throughput naïve libraries is a potential candidate for developing preventive and therapeutic antibodies. Methods Four nanobodies specific to the SARS-CoV-2 wild-type receptor-binding domain (RBD) were screened from a naïve phage display library. Their affinity and neutralizing activity were evaluated by surface plasmon resonance assays, surrogate virus neutralization tests, and pseudovirus neutralization assays. Preliminary identification of the binding epitopes of nanobodies by peptide-based ELISA and competition assay. Then four multivalent nanobodies were engineered by attaching the monovalent nanobodies to an antibody-binding nanoplatform constructed based on the lumazine synthase protein cage nanoparticles isolated from the Aquifex aeolicus (AaLS). Finally, the differences in potency between the monovalent and multivalent nanobodies were compared using the same methods. Results Three of the four specific nanobodies could maintain substantial inhibitory activity against the Omicron (B.1.1.529), of them, B-B2 had the best neutralizing activity against the Omicron (B.1.1.529) pseudovirus (IC50 = 1.658 μg/mL). The antiviral ability of multivalent nanobody LS-B-B2 was improved in the Omicron (B.1.1.529) pseudovirus assays (IC50 = 0.653 μg/mL). The results of peptide-based ELISA indicated that LS-B-B2 might react with the linear epitopes in the SARS-CoV-2 RBD conserved regions, which would clarify the mechanisms for the maintenance of potent neutralization of Omicron (B.1.1.529) preliminary. Conclusion Our study indicated that the AaLS could be used as an antibody-binding nanoplatform to present nanobodies on its surface and improve the potency of nanobodies. The multivalent nanobody LS-B-B2 may serve as a potential agent for the neutralization of SARS-CoV-2 variants.

4.
Microbiol Spectr ; 11(1): e0403022, 2023 02 14.
Article in English | MEDLINE | ID: covidwho-2213894

ABSTRACT

In recent years, Stenotrophomonas maltophilia (S. maltophilia) has become an important pathogen of clinically acquired infections accompanied by high pathogenicity and high mortality. Moreover, infections caused by multidrug-resistant S. maltophilia have emerged as a serious challenge in clinical practice. Bacteriophages are considered a promising alternative for the treatment of S. maltophilia infections due to their unique antibacterial mechanism and superior bactericidal ability compared with traditional antibiotic agents. Here, we reported a new phage BUCT700 that has a double-stranded DNA genome of 43,214 bp with 70% GC content. A total of 55 ORFs and no virulence or antimicrobial resistance genes were annotated in the genome of phage BUCT700. Phage BUCT700 has a broad host range (28/43) and can lyse multiple ST types of clinical S. maltophilia (21/33). Furthermore, bacteriophage BUCT700 used the Type IV fimbrial biogenesis protein PilX as an adsorption receptor. In the stability test, phage BUCT700 showed excellent thermal stability (4 to 60°C) and pH tolerance (pH = 4 to 12). Moreover, phage BUCT700 was able to maintain a high titer during long-term storage. The adsorption curve and one-step growth curve showed that phage BUCT700 could rapidly adsorb to the surface of S. maltophilia and produce a significant number of phage virions. In vivo, BUCT700 significantly increased the survival rate of S. maltophilia-infected Galleria mellonella (G. mellonella) larvae from 0% to 100% within 72 h, especially in the prophylactic model. In conclusion, these findings indicate that phage BUCT700 has promising potential for clinical application either as a prophylactic or therapeutic agent. IMPORTANCE The risk of Stenotrophomonas maltophilia infections mediated by the medical devices is exacerbated with an increase in the number of ICU patients during the Corona Virus Disease 2019 (COVID-19) epidemic. Complications caused by S. maltophilia infections could complicate the state of an illness, greatly extending the length of hospitalization and increasing the financial burden. Phage therapy might be a potential and promising alternative for clinical treatment of multidrug-resistant bacterial infections. Here, we investigated the protective effects of phage BUCT700 as prophylactic and therapeutic agents in Galleria mellonella models of infection, respectively. This study demonstrates that phage therapy can provide protection in targeting S. maltophilia-related infection, especially as prophylaxis.


Subject(s)
Bacteriophages , COVID-19 , Moths , Stenotrophomonas maltophilia , Animals , Humans , Bacteriophages/genetics , Bacteriophages/metabolism , Stenotrophomonas maltophilia/genetics , Larva/microbiology , Anti-Bacterial Agents/pharmacology
5.
Molecules ; 27(20)2022 Oct 18.
Article in English | MEDLINE | ID: covidwho-2110187

ABSTRACT

Early and rapid diagnosis of pathogens is important for the prevention and control of epidemic disease. The polymerase chain reaction (PCR) technique requires expensive instrument control, a special test site, complex solution treatment steps and professional operation, which can limit its application in practice. The pathogen detection method based on the clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated protein (CRISPR/Cas) system is characterized by strong specificity, high sensitivity and convenience for detection, which is more suitable for practical applications. This article first reviews the CRISPR/Cas system, and then introduces the application of the two types of systems represented by Type II (cas9), Type V (cas12a, cas12b, cas14a) and Type VI (cas13a) in pathogen detection. Finally, challenges and prospects are proposed.


Subject(s)
CRISPR-Associated Proteins , CRISPR-Cas Systems , CRISPR-Cas Systems/genetics , Gene Editing/methods , Polymerase Chain Reaction , CRISPR-Associated Proteins/genetics
6.
Virology ; 571: 12-20, 2022 06.
Article in English | MEDLINE | ID: covidwho-1799672

ABSTRACT

An epidemic owing to Norovirus (NoV) has recently been occurring worldwide. Severe cases of NoV can lead to patient death, resulting in significant public health problems. In the early stages of infection, antagonizing the production of host interferon (IFN) is an important strategy for viruses to establish infection. However, the relationship between NoV and interferon and its mechanism remains unclear. In this study, the 3C-like protease encoded by NoV was found to effectively suppress Sendai virus (SEV)-mediated IFN-ß production by cleaving the NF-κB essential modulator (NEMO). Glutamine 205 is the site of NoV3CLpro-mediated cleavage of NEMO and this cleavage suppresses the ability of NEMO to activate downstream IFN production. These findings demonstrate that NoV3CLpro-induced cleavage limits NEMO to the activation of type I IFN signaling. In summary, our findings indicate that NoV3CLpro is a new interferon antagonist, and enhances our understanding of the escape of innate immunity mediated by NoV3CLpro.


Subject(s)
Norovirus , Peptide Hydrolases , Antiviral Agents , Cysteine Endopeptidases , Humans , Interferon-beta/genetics , Interferons/genetics , Norovirus/genetics
7.
Front Immunol ; 12: 772511, 2021.
Article in English | MEDLINE | ID: covidwho-1556241

ABSTRACT

Recent exposure to seasonal coronaviruses (sCoVs) may stimulate cross-reactive antibody responses against severe acute respiratory syndrome CoV 2 (SARS-CoV-2). However, previous studies have produced divergent results regarding protective or damaging immunity induced by prior sCoV exposure. It remains unknown whether pre-existing humoral immunity plays a role in vaccine-induced neutralization and antibody responses. In this study, we collected 36 paired sera samples from 36 healthy volunteers before and after immunization with inactivated whole-virion SARS-CoV-2 vaccines for COVID-19, and analyzed the distribution and intensity of pre-existing antibody responses at the epitope level pre-vaccination as well as the relationship between pre-existing sCoV immunity and vaccine-induced neutralization. We observed large amounts of pre-existing cross-reactive antibodies in the conserved regions among sCoVs, especially the S2 subunit. Excep t for a few peptides, the IgG and IgM fluorescence intensities against S, M and N peptides did not differ significantly between pre-vaccination and post-vaccination sera of vaccinees who developed a neutralization inhibition rate (%inhibition) <40 and %inhibition ≥40 after two doses of the COVID-19 vaccine. Participants with strong and weak pre-existing cross-reactive antibodies (strong pre-CRA; weak pre-CRA) had similar %inhibition pre-vaccination (10.9% ± 2.9% vs. 12.0% ± 2.2%, P=0.990) and post-vaccination (43.8% ± 25.1% vs. 44.6% ± 21.5%, P=0.997). Overall, the strong pre-CRA group did not show a significantly greater increase in antibody responses to the S protein linear peptides post-vaccination compared with the weak pre-CRA group. Therefore, we found no evidence for a significant impact of pre-existing antibody responses on inactivated vaccine-induced neutralization and antibody responses. Our research provides an important basis for inactivated SARS-CoV-2 vaccine use in the context of high sCoV seroprevalence.


Subject(s)
Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Cross Reactions/immunology , SARS-CoV-2/immunology , Adult , COVID-19/prevention & control , Coronavirus/immunology , Coronavirus Infections/immunology , Female , Humans , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Male , Middle Aged , Neutralization Tests , Seasons , Vaccines, Inactivated/immunology
8.
Mediators Inflamm ; 2021: 9924542, 2021.
Article in English | MEDLINE | ID: covidwho-1450632

ABSTRACT

Compared with other deadly diseases, the coronavirus disease 2019 (COVID-19) is highly infectious with a relatively low mortality rate. Although critical cases account for only 5% of cases, the mortality rate for the same is nearly 50%. Therefore, the key to the COVID-19 treatment is to effectively treat severe patients and reduce the transition from severe to critical cases. A retrospective study was carried out to evaluate outcomes of treatment in patients with severe and critical COVID-19 admitted to a COVID-19 special hospital in Wuhan, China. A total of 75 severe and critical COVID-19 patients were admitted and treated with immunomodulation as the main strategy combined with anti-inflammatory therapy and appropriate anticoagulation. Leukocyte levels in patients with 7-14 days of onset to diagnosis were significantly lower than in those with >14 days. Higher levels of globulin and D-dimer and lower lymphocyte levels were found in the older age group (>65 years) than in the middle-aged group (50-64 years). Patients with comorbidity had higher levels of inflammatory indicators. After treatment, 65 (86.67%) patients were cured, 7 (9.33%) had improved, and 3 (4.00%) had died. Median hospitalization duration was 23 days. Fatal cases showed continuously increased levels of globulin, dehydrogenase (LDH), hypersensitive C-reactive protein (hs-CRP), D-dimer, and cytokines during treatment. Time from onset to diagnosis, age, and comorbidity are important influencing factors on treatment effects. The occurrence of immunosuppression, "cytokine storm," and thrombosis may be an important cause of death in severely infected cases. In conclusion, high cure rate and low mortality suggested that immunomodulation combined with anti-inflammatory therapy and appropriate anticoagulant therapy is a good strategy for treatment of patients with severe and critical COVID-19.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Adult , Aged , Aged, 80 and over , Anti-Inflammatory Agents/therapeutic use , COVID-19/blood , COVID-19/diagnostic imaging , COVID-19/immunology , Female , Humans , Immunomodulation , Male , Middle Aged , Retrospective Studies , Severity of Illness Index
9.
Front Public Health ; 9: 696664, 2021.
Article in English | MEDLINE | ID: covidwho-1365587

ABSTRACT

Since severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) began to spread in late 2019, laboratories around the world have widely used whole genome sequencing (WGS) to continuously monitor the changes in the viral genes and discovered multiple subtypes or branches evolved from SARS-CoV-2. Recently, several novel SARS-CoV-2 variants have been found to be more transmissible. They may affect the immune response caused by vaccines and natural infections and reduce the sensitivity to neutralizing antibodies. We analyze the distribution characteristics of prevalent SARS-CoV-2 variants and the frequency of mutant sites based on the data available from GISAID and PANGO by R 4.0.2 and ArcGIS 10.2. Our analysis suggests that B.1.1.7, B.1.351, and P.1 are more easily spreading than other variants, and the key mutations of S protein, including N501Y, E484K, and K417N/T, have high mutant frequencies, which may have become the main genotypes for the spread of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Humans , Spike Glycoprotein, Coronavirus
10.
Scandinavian Journal of Immunology ; n/a(n/a):e13088, 2021.
Article in English | Wiley | ID: covidwho-1263865

ABSTRACT

Abstract The coronavirus disease 2019 (COVID-19) pandemic has triggered a global health emergency and brought disaster to humans. Tremendous efforts have been made to control the pandemic, among which neutralizing antibodies (NAbs) are of specific interest to researchers. Neutralizing antibodies are generated within weeks after infection or immunization, and can protect cells from virus intrusion and confer protective immunity to cells. Thus, production of NAbs is considered as a main goal for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines and NAbs may be used for patient treatment in the form of monoclonal antibodies. Neutralization assays are capable of quantitatively detecting NAbs against SARS-CoV-2, allowing to explore the relationship between the level of NAbs and the severity of the disease, and may predict the possibility of re-infection in COVID-19 patients. They can also be used to test the effects of monoclonal antibodies, convalescent plasma and vaccines. At present, wild-type virus neutralization assay remains the gold standard for measuring NAbs;while pseudovirus neutralization assays, Surrogate virus neutralization test (sVNT), and high-throughput versions of neutralization assays are popular alternatives with their own advantages and disadvantages. In this review article, we summarize the characteristics and recent progress of SARS-CoV-2 neutralization assays. Special attention is given to the current limitations of various neutralization assays so as to promote new possible strategies with NAbs by which rapid SARS-CoV-2 serological diagnosis and antiviral screening in the future will be achieved.

11.
J Proteome Res ; 20(5): 2224-2239, 2021 05 07.
Article in English | MEDLINE | ID: covidwho-1118785

ABSTRACT

The outbreak of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has posed a serious threat to global public health. The mechanism of pathogenesis and the host immune response to SARS-CoV-2 infection are largely unknown. In the present study, we applied a quantitative proteomic technology to identify and quantify the ubiquitination changes that occur in both the virus and the Vero E6 cells during SARS-CoV-2 infection. By applying label-free, quantitative liquid chromatography with tandem mass spectrometry proteomics, 8943 lysine ubiquitination sites on 3086 proteins were identified, of which 138 sites on 104 proteins were quantified as significantly upregulated, while 828 sites on 447 proteins were downregulated at 72 h post-infection. Bioinformatics analysis suggested that SARS-CoV-2 infection might modulate host immune responses through the ubiquitination of important proteins, including USP5, IQGAP1, TRIM28, and Hsp90. Ubiquitination modification was also observed on 11 SAR-CoV-2 proteins, including proteins involved in virus replication and inhibition of the host innate immune response. Our study provides new insights into the interaction between SARS-CoV-2 and the host as well as potential targets for the prevention and treatment of COVID-19.


Subject(s)
COVID-19 , Proteome , Humans , Proteome/genetics , Proteomics , SARS-CoV-2 , Ubiquitin
12.
Front Public Health ; 8: 198, 2020.
Article in English | MEDLINE | ID: covidwho-613080

ABSTRACT

This study was performed to describe the epidemiologic characteristics of coronavirus disease 2019 (COVID-19) and explore risk factors for severe infection. Data of all 131 confirmed cases in Tianjin before February 20 were collected. By February 20, a total of 14/16 districts reported COVID-19 cases, with Baodi district reporting the most cases (n = 56). A total of 22 (16.8%) cases had a Wuhan-related exposure. Fever was the most common symptom (82.4%). The median duration of symptom onset to treatment was [1.0 (0.0-4.0) days], the duration of symptom onset to isolation [2.0 (0.0-6.0) days], and the duration of symptom onset to diagnosis [5.0 (2.0-8.0) days]. The analysis of the transmission chain showed two cluster infections with 62 cases infected. Transmission from a family member constituted 42%, usually at the end of transmission chain. Compared with patients with non-severe infections, patients with severe infections were more likely to be male (46.2 vs. 77.3%, P = 0.009) and had a Wuhan-related exposure (14.0 vs. 40.9%, P = 0.004). Multivariate logistic regression showed that male (OR 3.913, 95% CI 1.206, 12.696; P = 0.023) was an independent risk factor for severe infection. This study provides evidence on the epidemic of COVID-19 by analyzing the epidemiological characteristics of confirmed cases in Tianjin. Self-quarantine at an outbreak's early stage, especially for those with high-risk exposures, is conducive to prevent the transmission of infection. Further investigation is needed to confirm the risk factors for severe COVID-19 infection and investigate the mechanisms involved.


Subject(s)
COVID-19 , Communicable Diseases/epidemiology , Fever/etiology , Severity of Illness Index , Adult , COVID-19/epidemiology , COVID-19/transmission , China/epidemiology , Female , Humans , Male , Middle Aged , Risk Factors , SARS-CoV-2 , Sex Factors
14.
Chin Med J (Engl) ; 133(9): 1044-1050, 2020 May 05.
Article in English | MEDLINE | ID: covidwho-3436

ABSTRACT

BACKGROUND: The ongoing new coronavirus pneumonia (Corona Virus Disease 2019, COVID-19) outbreak is spreading in China, but it has not yet reached its peak. Five million people emigrated from Wuhan before lockdown, potentially representing a source of virus infection. Determining case distribution and its correlation with population emigration from Wuhan in the early stage of the epidemic is of great importance for early warning and for the prevention of future outbreaks. METHODS: The official case report on the COVID-19 epidemic was collected as of January 30, 2020. Time and location information on COVID-19 cases was extracted and analyzed using ArcGIS and WinBUGS software. Data on population migration from Wuhan city and Hubei province were extracted from Baidu Qianxi, and their correlation with the number of cases was analyzed. RESULTS: The COVID-19 confirmed and death cases in Hubei province accounted for 59.91% (5806/9692) and 95.77% (204/213) of the total cases in China, respectively. Hot spot provinces included Sichuan and Yunnan, which are adjacent to Hubei. The time risk of Hubei province on the following day was 1.960 times that on the previous day. The number of cases in some cities was relatively low, but the time risk appeared to be continuously rising. The correlation coefficient between the provincial number of cases and emigration from Wuhan was up to 0.943. The lockdown of 17 cities in Hubei province and the implementation of nationwide control measures efficiently prevented an exponential growth in the number of cases. CONCLUSIONS: The population that emigrated from Wuhan was the main infection source in other cities and provinces. Some cities with a low number of cases showed a rapid increase in case load. Owing to the upcoming Spring Festival return wave, understanding the risk trends in different regions is crucial to ensure preparedness at both the individual and organization levels and to prevent new outbreaks.


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , COVID-19 , China/epidemiology , Emigration and Immigration , Epidemics , Humans , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL